Z = 8

Mo $K\alpha$ radiation

 $0.20 \times 0.20 \times 0.15~\text{mm}$

 $\mu = 0.22 \text{ mm}^{-1}$

T = 296 K

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,3'-Dibenzyl-1,1'-[naphthalene-1,4diylbis(methylene)]di(1*H*-imidazol-3ium) bis(hexafluorophosphate)

Chang-Lu Liu* and Kun Huang

Department of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000, People's Republic of China Correspondence e-mail: dzliuchl@163.com

Received 5 July 2011; accepted 8 August 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; disorder in solvent or counterion; R factor = 0.067; wR factor = 0.163; data-to-parameter ratio = 11.2.

In the title *N*-heterocyclic carbene compound, $C_{32}H_{30}N_4^{2^+}$. 2PF₆⁻, the mean plane of the naphthalene ring system makes dihedral angles of 79.15 (15) and 76.85 (16) with the imidazole rings and 56.15 (19) and 80.56 (16)° with the benzene rings. An intramolecular C-H···N hydrogen bond occurs. The crystal structure is stabilized by C-H···F interactions. In addition, π - π interactions [centroid-centroid distances = 3.848 (1) and 3.574 (3) Å] are observed. The nine equatorial F atoms in the two PF₆⁻ anions were disordered over two positions with occupancy ratios of 0.545 (10):0.455 (10) and 0.793 (11): 0.207 (11) in the two anions.

Related literature

For the first free carbenes isolated, see: Arduengo *et al.* (1991). For the application of *N*-heterocyclic carbene ligands in transmetalation, see: Lin *et al.* (2009); Saito *et al.* (2011); Wang *et al.* (2005). For the synthesis of the title compound, see: Saito *et al.* (2011). For related structures, see: Saito *et al.* (2011). For standard bond lengths, see: Allen *et al.* (1987).

 $M_r = 760.54$

Experimental

Crystal data C₃₂H₃₀N₄²⁺·2PF₆⁻ Monoclinic, C2/c a = 33.8250 (9) Å b = 11.6062 (3) Å c = 17.6986 (5) Å $\beta = 101.158$ (1)° V = 6816.8 (3) Å³

Data collection

Bruker SMART CCD area-detector	5990 measured reflections
diffractometer	5990 independent reflections
Absorption correction: multi-scan	4848 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.029$
$T_{\min} = 0.957, \ T_{\max} = 0.967$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.067$ 106 restraints $wR(F^2) = 0.163$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.43$ e Å⁻³5990 reflections $\Delta \rho_{min} = -0.25$ e Å⁻³534 parameters $\Delta \rho_{min} = -0.25$ e Å⁻³

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1\cdots F3^{i}$	0.93	2.41	3.229 (6)	147
$C7-H7A\cdots F1^{ii}$	0.97	2.54	3.375 (5)	144
$C7 - H7B \cdot \cdot \cdot F2^{iii}$	0.97	2.47	3.184 (5)	130
C9−H9···F4	0.93	2.45	3.358 (6)	164
C10−H10···F7	0.93	2.47	3.384 (10)	166
$C14-H14\cdots F10^{iv}$	0.93	2.55	3.453 (11)	165
C18−H18···F11	0.93	2.46	3.252 (12)	143
C18−H18···N3	0.93	2.62	3.102 (4)	113
C23-H23···F4	0.93	2.37	3.241 (6)	156
$C24 - H24 \cdots F9^{i}$	0.93	2.53	3.258 (15)	136
$C25-H25\cdots F2^{v}$	0.93	2.49	3.374 (6)	158

Symmetry codes: (i) $x, -y + 1, z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) x, y - 1, z; (iv) x, y + 1, z; (v) $x, -y + 2, z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2293).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1–19.
- Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361-363.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Lin, J. C. Y., Huang, R. T. W., Lee, C. S., Bhattacharyya, A., Hwang, W. S. & Lin, I. J. B. (2009). Chem. Rev. 109, 3561-3598.
- Saito, S., Saika, M., Yamasaki, R., Azumaya, I. & Masu, H. (2011). Organometallics, 30, 1366–1373.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, J. W., Xu, F. B., Li, Q. S., Song, H. B. & Zhang, Z. Z. (2005). Inorg. Chem. Commun. 8, 1053–1055.

Acta Cryst. (2011). E67, o2343 [doi:10.1107/S1600536811032132]

3,3'-Dibenzyl-1,1'-[naphthalene-1,4-diylbis(methylene)]di(1*H***-imidazol-3-ium) bis(hexafluorophosphate)**

C.-L. Liu and K. Huang

Comment

Two decades have passed since the first free N-heterocyclic carbene (NHC) was disclosed by Arduengo and coworks (Arduengo *et al.*, 1991). 1,3-disubstituted imidazolium salts play important roles in synthesis of transition metal NHC's (Lin *et al.*, 2009; Saito *et al.*, 2011; Wang *et al.*, 2005). Herein, we report on the crystal structure of the title compound, a new NHC precursor.

The molecular structure of the title compound is shown in Fig. 1. Bond lengths (Allen *et al.*, 1987) and angles in the cation are normal. The mean plane of the naphthalene ring [A = (N1,N2,C23-C24)] makes dihedral angles with the mean planes of the imidazole rings [B = (N1,N2,C23-C25); C = (N3,N4,C8-C10)] and the benzene rings [D = (C27-C32); E = (C1-C6)] of A/B = 79.15 (15) °, A/C = 76.85 (16) °, A/D = 56.15 (19) °, and A/E = 80.56 (16)°. The PF₆⁻ anions are disordered with two postitions found for nine F atoms (F4-F6, F7-F12) in the equitorial planes.

In the crystal there are weak $\pi \cdots \pi$ interactions involving the imidazole, benzene and naphthalene rings with centroidcentroid distances, $Cg1 \cdots Cg3^{i}$, $Cg5 \cdots Cg5^{ii}$ of 3.847 (2) and 3.5744 (19) Å, respectively [symmetry codes: (i) x, y + 1, z; (ii) -x, y, -z + 1/2. Cg1 centroid of the imidazole ring (N1,N2,C23—C24); Cg3 centroid of ring (C1—C6); Cg5 centroid of ring (C16—C21)]. In addition, a number of C—H…F hydrogen bonds are observed (Table 1 and Fig. 2).

Experimental

The title compound was prepared according to the reported procedures (Saito *et al.*, 2011). Colourless single crystals suitable for X-ray diffraction were obtained by recrystallization from acetonitrile and ethyl ether (v/v = 1:1).

Refinement

H atoms were placed in calculated orientations and treated as riding atoms: C—H = 0.93 and 0.97 Å, for CH and CH₂ H-atoms, respectively, with $U_{iso}(H) = 1.2U_{eq}(C)$. Nine equatorial F atoms (F4—F6, F7—F12) in the two PF₆⁻ anions were disordered over two positions (occupancies: 0.793 (11) and 0.207 (11) for F4—F6 and F4'-F6', respectively; 0.545 (10) and 0.455 (10) for F7—F12 and F7'-F12', respectively).

Figures

Fig. 1. A view of the molecular structure of the title compound with atom numbering. The displacement ellipsoids are drawn at the 30% probability level. Only the major components of the disordered fluorine atoms are shown.

Fig. 2. Crystal packing of the title compound viewed along the *b* axis, showing the C—H \cdots F interactions (dashed lines) involving the cations and anions [H atoms not involved in these interactions have been omitted for clarity].

3-benzyl-1-({4-[(3-benzyl-1H-imidazol-3-ium-1-yl)methyl]naphthalen- 1-yl}methyl)-1H-imidazol-3-ium bis(hexafluorophosphate)

Crystal data

$C_{32}H_{30}N_4^{2+}\cdot 2PF_6^{-}$	F(000) = 3104
$M_r = 760.54$	$D_{\rm x} = 1.482 \ {\rm Mg \ m}^{-3}$
Monoclinic, $C2/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 9587 reflections
a = 33.8250 (9) Å	$\theta = 2.4 - 27.5^{\circ}$
b = 11.6062 (3) Å	$\mu = 0.22 \text{ mm}^{-1}$
c = 17.6986 (5) Å	T = 296 K
$\beta = 101.158 \ (1)^{\circ}$	Block, colourless
$V = 6816.8 (3) \text{ Å}^3$	$0.20\times0.20\times0.15~mm$
Z = 8	

Data collection

5990 independent reflections
4848 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.029$
$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
$h = -40 \rightarrow 39$
$k = 0 \rightarrow 13$
$l = 0 \rightarrow 20$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.067$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.163$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0576P)^{2} + 12.5479P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5990 reflections	$(\Delta/\sigma)_{\rm max} = 0.004$
534 parameters	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
106 restraints	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
N1	0.08264 (7)	0.9657 (2)	0.37930 (14)	0.0574 (9)	
N2	0.14129 (8)	0.9374 (2)	0.44984 (15)	0.0617 (9)	
N3	0.11786 (8)	0.5263 (2)	0.15155 (14)	0.0592 (9)	
N4	0.15515 (8)	0.3862 (2)	0.20370 (16)	0.0632 (10)	
C1	0.15298 (16)	0.2279 (4)	0.4641 (3)	0.0944 (19)	
C2	0.12019 (14)	0.2474 (4)	0.4077 (3)	0.0909 (17)	
C3	0.12467 (12)	0.2595 (3)	0.3324 (2)	0.0790 (14)	
C4	0.16251 (11)	0.2531 (3)	0.3133 (2)	0.0694 (11)	
C5	0.19513 (12)	0.2329 (3)	0.3711 (3)	0.0883 (17)	
C6	0.19023 (15)	0.2197 (4)	0.4466 (3)	0.1003 (17)	
C7	0.16755 (12)	0.2689 (3)	0.2311 (2)	0.0781 (16)	
C8	0.17466 (11)	0.4866 (3)	0.2285 (2)	0.0734 (14)	
C9	0.15153 (10)	0.5735 (3)	0.1960 (2)	0.0684 (11)	
C10	0.12119 (10)	0.4129 (3)	0.15704 (18)	0.0620 (11)	
C11	0.08189 (11)	0.5901 (3)	0.11210 (18)	0.0682 (11)	
C12	0.07110 (9)	0.6843 (3)	0.16312 (17)	0.0577 (10)	
C13	0.07231 (10)	0.7958 (3)	0.14081 (18)	0.0644 (11)	
C14	0.06459 (10)	0.8860 (3)	0.18869 (19)	0.0659 (12)	
C15	0.05548 (9)	0.8652 (3)	0.25894 (18)	0.0578 (10)	

C16	0.05272 (8)	0.7490 (3)	0.28405 (17)	0.0539 (10)	
C17	0.06026 (9)	0.6572 (3)	0.23542 (17)	0.0555 (10)	
C18	0.05654 (10)	0.5432 (3)	0.2607 (2)	0.0685 (12)	
C19	0.04682 (11)	0.5197 (3)	0.3299 (2)	0.0804 (16)	
C20	0.03969 (11)	0.6100 (4)	0.3780 (2)	0.0758 (14)	
C21	0.04222 (9)	0.7207 (3)	0.35529 (19)	0.0647 (11)	
C22	0.04995 (10)	0.9646 (3)	0.31026 (19)	0.0689 (11)	
C23	0.12086 (9)	0.9425 (3)	0.37841 (18)	0.0597 (11)	
C24	0.07865 (11)	0.9759 (3)	0.45441 (19)	0.0667 (12)	
C25	0.11500 (11)	0.9584 (3)	0.49870 (19)	0.0686 (11)	
C26	0.18335 (10)	0.8995 (4)	0.4714 (2)	0.0794 (14)	
C27	0.18627 (11)	0.7727 (4)	0.48956 (19)	0.0740 (14)	
C28	0.16502 (17)	0.6915 (4)	0.4413 (3)	0.126 (2)	
C29	0.1689 (2)	0.5760 (5)	0.4574 (3)	0.145 (3)	
C30	0.19425 (18)	0.5390 (5)	0.5218 (3)	0.118 (3)	
C31	0.21537 (13)	0.6164 (5)	0.5702 (3)	0.100 (2)	
C32	0.21155 (11)	0.7333 (4)	0.5550 (2)	0.0830 (16)	
P2	0.01796 (3)	0.22512 (7)	0.09338 (5)	0.0606 (3)	
F7	0.0471 (3)	0.2620 (10)	0.0432 (4)	0.150 (5)	0.545 (10)
F8	-0.0064 (5)	0.1822 (15)	0.1482 (8)	0.218 (7)	0.545 (10)
F9	0.0099 (3)	0.1149 (13)	0.0461 (12)	0.211 (7)	0.545 (10)
F10	0.0551 (4)	0.1765 (9)	0.1469 (9)	0.194 (6)	0.545 (10)
F11	0.0261 (2)	0.3391 (8)	0.1372 (8)	0.126 (4)	0.545 (10)
F12	-0.0194 (3)	0.2793 (10)	0.0455 (8)	0.176 (5)	0.545 (10)
F7'	0.0197 (5)	0.3549 (9)	0.0831 (11)	0.182 (7)	0.455 (10)
F8'	-0.0224 (3)	0.2198 (11)	0.1211 (10)	0.139 (6)	0.455 (10)
F9'	0.0171 (4)	0.0931 (7)	0.0937 (9)	0.145 (5)	0.455 (10)
F10'	0.0597 (3)	0.2222 (14)	0.0719 (12)	0.176 (7)	0.455 (10)
F11'	0.0399 (6)	0.246 (2)	0.1736 (5)	0.221 (9)	0.455 (10)
F12'	-0.0018 (5)	0.2177 (15)	0.0093 (5)	0.173 (6)	0.455 (10)
P1	0.19770 (3)	0.92074 (8)	0.20869 (5)	0.0678 (3)	
F1	0.23389 (10)	0.8405 (3)	0.2363 (2)	0.1598 (16)	
F2	0.16208 (12)	1.0041 (3)	0.1833 (3)	0.198 (2)	
F3	0.17942 (15)	0.8392 (3)	0.14383 (19)	0.190 (2)	
F4	0.17314 (15)	0.8443 (4)	0.2571 (3)	0.126 (2)	0.793 (11)
F5	0.2123 (2)	0.9987 (4)	0.2799 (3)	0.144 (3)	0.793 (11)
F6	0.2185 (3)	0.9949 (9)	0.1582 (5)	0.224 (5)	0.793 (11)
F4'	0.1816 (8)	0.937 (3)	0.2751 (11)	0.196 (13)	0.207 (11)
F5'	0.2303 (5)	1.015 (2)	0.230 (2)	0.178 (12)	0.207 (11)
F6'	0.2236 (9)	0.916 (2)	0.1454 (17)	0.178 (12)	0.207 (11)
H1	0.14990	0.22020	0.51500	0.1130*	
H2	0.09470	0.25260	0.41990	0.1090*	
H3	0.10210	0.27200	0.29400	0.0940*	
H5	0.22080	0.22810	0.35960	0.1060*	
H6	0.21250	0.20520	0.48530	0.1200*	
H/A	0.19550	0.25660	0.22780	0.0940*	
H/B	0.15130	0.21250	0.19850	0.0940*	
H8	0.19940	0.49320	0.26180	0.0880*	
H9	0.15730	0.65160	0.20250	0.0820*	

H10	0.10240	0.36020	0.13180	0.0740*
H11A	0.05940	0.53740	0.09870	0.0820*
H11B	0.08720	0.62350	0.06480	0.0820*
H13	0.07840	0.81270	0.09300	0.0770*
H14	0.06570	0.96170	0.17200	0.0790*
H18	0.06090	0.48250	0.22900	0.0820*
H19	0.04490	0.44370	0.34540	0.0970*
H20	0.03320	0.59390	0.42560	0.0910*
H21	0.03690	0.77970	0.38740	0.0780*
H22A	0.05020	1.03630	0.28220	0.0830*
H22B	0.02410	0.95790	0.32590	0.0830*
H23	0.13160	0.93150	0.33440	0.0720*
H24	0.05500	0.99210	0.47170	0.0800*
H25	0.12130	0.96010	0.55220	0.0820*
H26A	0.19670	0.94270	0.51600	0.0960*
H26B	0.19720	0.91550	0.42940	0.0960*
H28	0.14770	0.71560	0.39670	0.1510*
H29	0.15400	0.52290	0.42410	0.1740*
H30	0.19710	0.46060	0.53240	0.1410*
H31	0.23270	0.59100	0.61440	0.1200*
H32	0.22620	0.78570	0.58930	0.0990*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0562 (15)	0.0533 (15)	0.0632 (15)	0.0026 (12)	0.0131 (12)	-0.0050 (12)
N2	0.0576 (15)	0.0639 (17)	0.0618 (15)	-0.0065 (13)	0.0073 (12)	-0.0049 (13)
N3	0.0649 (16)	0.0524 (16)	0.0626 (15)	-0.0048 (12)	0.0183 (13)	-0.0055 (12)
N4	0.0701 (17)	0.0515 (16)	0.0719 (17)	-0.0020 (13)	0.0232 (14)	-0.0047 (13)
C1	0.117 (4)	0.082 (3)	0.084 (3)	-0.017 (3)	0.019 (3)	0.009 (2)
C2	0.097 (3)	0.084 (3)	0.099 (3)	-0.006 (2)	0.037 (3)	0.015 (2)
C3	0.073 (2)	0.075 (2)	0.090 (3)	-0.0007 (19)	0.018 (2)	0.013 (2)
C4	0.079 (2)	0.0464 (18)	0.085 (2)	-0.0022 (16)	0.0215 (19)	0.0030 (16)
C5	0.074 (3)	0.079 (3)	0.111 (3)	-0.007 (2)	0.016 (2)	0.010 (2)
C6	0.095 (3)	0.100 (3)	0.096 (3)	-0.018 (3)	-0.006 (3)	0.016 (3)
C7	0.096 (3)	0.051 (2)	0.094 (3)	0.0088 (18)	0.035 (2)	0.0017 (18)
C8	0.061 (2)	0.060 (2)	0.098 (3)	-0.0064 (17)	0.0125 (18)	-0.0120 (19)
C9	0.063 (2)	0.0527 (19)	0.090 (2)	-0.0108 (16)	0.0163 (18)	-0.0066 (17)
C10	0.073 (2)	0.0528 (19)	0.0645 (19)	-0.0110 (16)	0.0239 (17)	-0.0107 (15)
C11	0.080 (2)	0.067 (2)	0.0560 (18)	0.0009 (17)	0.0092 (16)	-0.0028 (16)
C12	0.0560 (18)	0.0601 (19)	0.0536 (17)	0.0000 (14)	0.0023 (13)	0.0000 (14)
C13	0.069 (2)	0.068 (2)	0.0545 (17)	0.0042 (16)	0.0075 (15)	0.0092 (15)
C14	0.070 (2)	0.055 (2)	0.068 (2)	0.0103 (16)	0.0018 (16)	0.0089 (16)
C15	0.0480 (16)	0.0588 (19)	0.0619 (18)	0.0072 (14)	-0.0010 (13)	-0.0019 (15)
C16	0.0405 (15)	0.0602 (18)	0.0576 (17)	0.0005 (13)	0.0014 (12)	-0.0029 (14)
C17	0.0492 (16)	0.0578 (19)	0.0571 (17)	-0.0045 (14)	0.0044 (13)	-0.0016 (14)
C18	0.073 (2)	0.058 (2)	0.077 (2)	-0.0109 (16)	0.0205 (17)	-0.0041 (17)
C19	0.087 (3)	0.067 (2)	0.093 (3)	-0.014 (2)	0.032 (2)	0.010 (2)

C20	0.077 (2)	0.085 (3)	0.070 (2)	-0.013 (2)	0.0255 (18)	0.002 (2)
C21	0.0586 (19)	0.073 (2)	0.0627 (19)	-0.0069 (16)	0.0122 (15)	-0.0082 (16)
C22	0.0598 (19)	0.065 (2)	0.077 (2)	0.0142 (16)	0.0009 (16)	-0.0039 (17)
C23	0.0579 (18)	0.062 (2)	0.0599 (18)	0.0012 (15)	0.0132 (15)	-0.0041 (15)
C24	0.069 (2)	0.063 (2)	0.073 (2)	-0.0040 (17)	0.0257 (18)	-0.0052 (17)
C25	0.083 (2)	0.069 (2)	0.0571 (18)	-0.0074 (18)	0.0215 (17)	-0.0061 (16)
C26	0.057 (2)	0.095 (3)	0.079 (2)	-0.0070 (19)	-0.0048 (17)	-0.007 (2)
C27	0.066 (2)	0.089 (3)	0.062 (2)	0.0104 (19)	-0.0002 (16)	-0.0031 (18)
C28	0.158 (5)	0.086 (3)	0.104 (3)	0.012 (3)	-0.050 (3)	-0.008 (3)
C29	0.189 (6)	0.084 (4)	0.132 (5)	0.017 (4)	-0.040 (4)	-0.013 (3)
C30	0.142 (5)	0.099 (4)	0.112 (4)	0.037 (3)	0.023 (3)	0.011 (3)
C31	0.082 (3)	0.143 (5)	0.076 (3)	0.041 (3)	0.019 (2)	0.027 (3)
C32	0.062 (2)	0.126 (4)	0.061 (2)	0.012 (2)	0.0122 (17)	-0.002 (2)
P2	0.0639 (5)	0.0547 (5)	0.0654 (5)	-0.0080 (4)	0.0180 (4)	-0.0066 (4)
F7	0.154 (9)	0.226 (11)	0.091 (4)	-0.023 (7)	0.079 (5)	0.025 (5)
F8	0.262 (15)	0.250 (14)	0.184 (9)	-0.128 (11)	0.148 (11)	0.007 (9)
F9	0.140 (8)	0.190 (11)	0.327 (15)	-0.072 (8)	0.104 (10)	-0.211 (11)
F10	0.179 (9)	0.119 (7)	0.234 (13)	0.039 (6)	-0.083 (9)	0.055 (7)
F11	0.098 (5)	0.096 (6)	0.199 (10)	-0.032 (4)	0.067 (6)	-0.091 (7)
F12	0.108 (5)	0.225 (10)	0.163 (9)	0.055 (6)	-0.052 (6)	-0.001 (8)
F7'	0.224 (13)	0.058 (5)	0.272 (16)	-0.011 (5)	0.066 (13)	0.018 (8)
F8'	0.068 (4)	0.125 (7)	0.241 (17)	-0.014 (4)	0.074 (6)	-0.067 (9)
F9'	0.141 (7)	0.052 (4)	0.234 (14)	0.006 (4)	0.016 (8)	0.056 (7)
F10'	0.067 (5)	0.176 (10)	0.302 (17)	-0.047 (6)	0.077 (8)	-0.168 (11)
F11'	0.270 (18)	0.32 (2)	0.057 (4)	-0.155 (15)	-0.011 (6)	-0.022 (8)
F12'	0.241 (14)	0.191 (12)	0.062 (4)	-0.058 (10)	-0.034 (5)	0.015 (5)
P1	0.0671 (6)	0.0703 (6)	0.0606 (5)	-0.0036 (4)	-0.0012 (4)	0.0045 (4)
F1	0.118 (2)	0.166 (3)	0.189 (3)	0.069 (2)	0.014 (2)	0.005 (3)
F2	0.156 (3)	0.117 (3)	0.268 (5)	0.044 (2)	-0.091 (3)	0.005 (3)
F3	0.270 (5)	0.171 (4)	0.106 (2)	-0.068 (3)	-0.018 (3)	-0.047 (2)
F4	0.164 (4)	0.092 (3)	0.146 (4)	-0.013 (3)	0.092 (3)	0.009 (2)
F5	0.181 (6)	0.097 (3)	0.124 (4)	0.006 (3)	-0.046 (4)	-0.043 (3)
F6	0.271 (10)	0.221 (9)	0.187 (7)	-0.097 (8)	0.065 (6)	0.100 (7)
F4'	0.21 (2)	0.30 (3)	0.119 (12)	-0.03 (2)	0.136 (14)	-0.061 (18)
F5'	0.055 (8)	0.21 (2)	0.26 (3)	-0.054 (10)	0.007 (13)	0.01 (2)
F6'	0.21 (2)	0.14 (2)	0.23 (2)	0.038 (19)	0.160 (19)	-0.010 (19)

Geometric parameters (Å, °)

P2—F8'	1.539 (12)	C15—C22	1.502 (5)
P2—F9'	1.533 (8)	C15-C16	1.429 (5)
P2—F10'	1.532 (12)	C16—C17	1.423 (5)
P2—F11'	1.489 (11)	C16—C21	1.413 (4)
P2—F12'	1.511 (9)	C17—C18	1.410 (5)
P2—F11	1.531 (11)	C18—C19	1.356 (5)
P2—F12	1.515 (12)	C19—C20	1.400 (5)
P2—F7'	1.520 (11)	C20—C21	1.354 (6)
P2—F7	1.511 (9)	C24—C25	1.340 (5)
P2—F8	1.476 (16)	C26—C27	1.506 (6)

P2—F9	1.524 (17)	C27—C28	1.377 (6)
P2—F10	1.528 (14)	C27—C32	1.378 (5)
P1—F1	1.541 (4)	C28—C29	1.372 (7)
P1—F2	1.543 (4)	C29—C30	1.357 (8)
P1—F3	1.524 (4)	C30—C31	1.347 (8)
P1—F6	1.509 (10)	C31—C32	1.384 (7)
P1—F4	1.577 (5)	С1—Н1	0.9300
P1—F5	1.552 (5)	С2—Н2	0.9300
P1—F6'	1.55 (3)	С3—Н3	0.9300
P1—F4'	1.40 (2)	С5—Н5	0.9300
P1—F5'	1.55 (2)	С6—Н6	0.9300
N1—C22	1.481 (4)	С7—Н7В	0.9700
N1—C23	1.324 (4)	С7—Н7А	0.9700
N1—C24	1.367 (4)	С8—Н8	0.9300
N2—C23	1.320 (4)	С9—Н9	0.9300
N2—C25	1.377 (4)	C10—H10	0.9300
N2—C26	1.467 (4)	C11—H11B	0.9700
N3—C10	1.323 (4)	C11—H11A	0.9700
N3—C9	1.367 (4)	С13—Н13	0.9300
N3—C11	1.479 (4)	C14—H14	0.9300
N4—C10	1.315 (4)	C18—H18	0.9300
N4—C7	1.478 (4)	С19—Н19	0.9300
N4—C8	1.369 (4)	С20—Н20	0.9300
C1—C6	1.358 (8)	C21—H21	0.9300
C1—C2	1.360 (7)	C22—H22A	0.9700
C2—C3	1.377 (6)	С22—Н22В	0.9700
C3—C4	1.388 (6)	С23—Н23	0.9300
C4—C5	1.372 (6)	C24—H24	0.9300
C4—C7	1.508 (5)	C25—H25	0.9300
C5—C6	1.386 (7)	C26—H26A	0.9700
C8—C9	1.336 (5)	С26—Н26В	0.9700
C11—C12	1.507 (5)	C28—H28	0.9300
C12—C13	1.356 (5)	С29—Н29	0.9300
C12—C17	1.433 (4)	С30—Н30	0.9300
C13—C14	1.403 (5)	C31—H31	0.9300
C14—C15	1.359 (5)	С32—Н32	0.9300
F8—P2—F11	91.6 (8)	C14—C15—C22	119.6 (3)
F8—P2—F12	89.8 (8)	C15—C16—C21	122.7 (3)
F9—P2—F10	93.9 (7)	C17—C16—C21	118.1 (3)
F9—P2—F11	177.2 (9)	C15—C16—C17	119.2 (3)
F9—P2—F12	90.0 (7)	C12-C17-C18	122.9 (3)
F10—P2—F11	87.7 (6)	C16—C17—C18	118.2 (3)
F10—P2—F12	175.5 (7)	C12—C17—C16	118.9 (3)
F11—P2—F12	88.5 (6)	C17—C18—C19	121.8 (3)
F7'—P2—F8'	97.8 (8)	C18—C19—C20	119.9 (3)
F7'—P2—F9'	173.0 (9)	C19—C20—C21	120.1 (3)
F7'—P2—F10'	86.2 (9)	C16—C21—C20	121.8 (3)
F7'—P2—F11'	85.9 (11)	N1—C22—C15	110.2 (3)
F7'—P2—F12'	87.6 (10)	N1—C23—N2	109.2 (3)

F8'—P2—F9'	86.6 (7)	N1—C24—C25	107.7 (3)
F8'	174.5 (9)	N2-C25-C24	106.9 (3)
F8'	90 7 (10)	N2-C26-C27	111.6 (3)
F8'	93 5 (9)	$C_{26} = C_{27} = C_{28}$	122.1(3)
F9'	89 9 (8)	$C_{26} = C_{27} = C_{32}$	120.6 (4)
F9'	99.5 (11)	$C_{28} = C_{27} = C_{32}$	1173(4)
F9'	867(9)	$C_{20} = C_{20} = C$	121 5 (5)
$F_{10} = P_{2} = F_{11}$	85.8 (11)	C_{28} C_{29} C_{30}	121.0(5) 120.2(5)
F10' - P2 - F12'	90.4 (10)	$C_{29} = C_{30} = C_{31}$	120.2(5) 1196(5)
F11'	172 8 (11)	C_{2}^{30} C_{31}^{31} C_{32}^{32}	119.0(5) 120.8(5)
F7P2F12	97.0 (6)	$C_{30} = C_{31} = C_{32}$	120.0(3) 120.5(4)
F8_P2_F0	90.8 (9)	$C_2 - C_1 - H_1$	120.0 (4)
$F_{0} = 12 = 10$	90.8 (9) 88 0 (8)	$C_2 = C_1 = H_1$	120.00
10 - 12 - 110 E7 D2 E9	172 2 (7)	C_{2} C_{2} H_{2}	120.00
$\Gamma / - \Gamma 2 - \Gamma \delta$ E7 D2 E0	1/3.2(7)	$C_{3} = C_{2} = H_{2}$	120.00
$\Gamma / - \Gamma 2 - \Gamma 9$	89.0 (7) 85.2 (6)	$C_1 = C_2 = H_2$	120.00
F / - F 2 - F 10	83.3 (6)	$C_2 = C_3 = H_3$	120.00
F/P2F11	88.8 (6)	C4—C3—H3	120.00
F1 - P1 - F2	1/8.0(2)	С4—С5—Н5	120.00
FI - PI - F3	92.6 (2)	С6—С5—Н5	120.00
$F_1 - P_1 - F_4$	87.6 (2)	С5—С6—Н6	120.00
F2—P1—F5	88.8 (3)	С1—С6—Н6	120.00
F2—P1—F6	84.1 (4)	N4—C7—H7B	110.00
F2—P1—F4'	75.6 (12)	С4—С7—Н7А	110.00
F2—P1—F5'	96.2 (8)	H7A—C7—H7B	108.00
F2—P1—F6'	109.3 (10)	С4—С7—Н7В	110.00
F3—P1—F4	83.1 (2)	N4—C7—H7A	110.00
F3—P1—F5	173.1 (3)	N4—C8—H8	126.00
F3—P1—F6	94.4 (4)	С9—С8—Н8	126.00
F3—P1—F4'	123.3 (12)	С8—С9—Н9	126.00
F3—P1—F5'	142.1 (12)	N3—C9—H9	126.00
F3—P1—F6'	68.7 (10)	N3—C10—H10	125.00
F4—P1—F5	90.3 (3)	N4—C10—H10	125.00
F4—P1—F6	176.0 (4)	N3—C11—H11A	110.00
F5—P1—F6	92.1 (4)	N3—C11—H11B	110.00
F4'—P1—F5'	94.3 (17)	H11A—C11—H11B	108.00
F4'—P1—F6'	167.6 (16)	C12—C11—H11B	110.00
F5'—P1—F6'	74.1 (15)	C12—C11—H11A	110.00
F1—P1—F5	89.2 (3)	C12—C13—H13	119.00
F1—P1—F6	95.7 (4)	C14—C13—H13	119.00
F1—P1—F4'	103.3 (12)	C13-C14-H14	119.00
F1—P1—F5'	82.2 (8)	C15-C14-H14	119.00
F1—P1—F6'	71.5 (10)	C17—C18—H18	119.00
F2—P1—F3	89.4 (2)	C19-C18-H18	119.00
F2—P1—F4	92.7 (2)	С20—С19—Н19	120.00
C22—N1—C24	127.2 (3)	C18—C19—H19	120.00
C23—N1—C24	108.0 (3)	C19—C20—H20	120.00
C22—N1—C23	124.3 (3)	C21—C20—H20	120.00
C23—N2—C25	108.2 (3)	C20—C21—H21	119.00
C23—N2—C26	124.4 (3)	C16—C21—H21	119.00

C25—N2—C26	127.0 (3)	N1—C22—H22A	110.00
C9—N3—C10	107.9 (3)	С15—С22—Н22В	110.00
C9—N3—C11	126.1 (3)	H22A—C22—H22B	108.00
C10—N3—C11	125.7 (3)	N1—C22—H22B	110.00
C7—N4—C8	126.2 (3)	С15—С22—Н22А	110.00
C7—N4—C10	125.5 (3)	N1—C23—H23	125.00
C8—N4—C10	108.0 (3)	N2—C23—H23	125.00
C2—C1—C6	120.4 (5)	С25—С24—Н24	126.00
C1—C2—C3	120.0 (5)	N1—C24—H24	126.00
C2—C3—C4	120.6 (4)	С24—С25—Н25	127.00
C5—C4—C7	121.0 (4)	N2—C25—H25	127.00
C3—C4—C7	120.7 (3)	N2—C26—H26A	109.00
C3—C4—C5	118.3 (3)	N2—C26—H26B	109.00
C4—C5—C6	120.6 (4)	С27—С26—Н26В	109.00
C1—C6—C5	120.1 (5)	H26A—C26—H26B	108.00
N4—C7—C4	110.5 (3)	С27—С26—Н26А	109.00
N4—C8—C9	107.4 (3)	С29—С28—Н28	119.00
N3—C9—C8	107.4 (3)	С27—С28—Н28	119.00
N3—C10—N4	109.4 (3)	С28—С29—Н29	120.00
N3—C11—C12	110.7 (3)	С30—С29—Н29	120.00
C11—C12—C13	119.6 (3)	С29—С30—Н30	120.00
C11—C12—C17	120.6 (3)	С31—С30—Н30	120.00
C13—C12—C17	119.8 (3)	С32—С31—Н31	120.00
C12—C13—C14	121.1 (3)	С30—С31—Н31	120.00
C13—C14—C15	121.5 (3)	С27—С32—Н32	120.00
C14—C15—C16	119.5 (3)	C31—C32—H32	120.00
C16—C15—C22	120.9 (3)		
C23—N1—C22—C15	40.0 (4)	C11—C12—C13—C14	-176.5 (3)
C24—N1—C22—C15	-131.3 (3)	C17-C12-C13-C14	2.4 (5)
C22—N1—C23—N2	-172.6 (3)	C11—C12—C17—C16	176.1 (3)
C24—N1—C23—N2	0.1 (4)	C11—C12—C17—C18	-4.1 (5)
C22—N1—C24—C25	172.4 (3)	C13—C12—C17—C16	-2.8 (5)
C23—N1—C24—C25	-0.1 (4)	C13—C12—C17—C18	176.9 (3)
C25—N2—C23—N1	-0.1 (4)	C12—C13—C14—C15	-0.3 (5)
C26—N2—C23—N1	172.1 (3)	C13—C14—C15—C16	-1.5 (5)
C23—N2—C25—C24	0.0 (4)	C13-C14-C15-C22	176.3 (3)
C26—N2—C25—C24	-171.9 (3)	C14—C15—C16—C17	1.1 (4)
C23—N2—C26—C27	-93.1 (4)	C14—C15—C16—C21	-178.1 (3)
C25—N2—C26—C27	77.6 (4)	C22-C15-C16-C17	-176.7 (3)
C10—N3—C9—C8	-0.6 (4)	C22—C15—C16—C21	4.2 (5)
C11—N3—C9—C8	172.5 (3)	C14—C15—C22—N1	-112.9 (3)
C9—N3—C10—N4	0.8 (4)	C16—C15—C22—N1	64.8 (4)
C11—N3—C10—N4	-172.3 (3)	C15—C16—C17—C12	1.1 (4)
C9—N3—C11—C12	-40.9 (4)	C15—C16—C17—C18	-178.7 (3)
C10—N3—C11—C12	131.0 (3)	C21—C16—C17—C12	-179.8 (3)
C8—N4—C7—C4	68.7 (4)	C21—C16—C17—C18	0.5 (4)
C10—N4—C7—C4	-103.9 (4)	C15—C16—C21—C20	179.9 (3)
C'/N4C8C9	-173.3(3)	C17—C16—C21—C20	0.7 (5)
C10—N4—C8—C9	0.3 (4)	C12—C17—C18—C19	179.0 (3)

C7—N4—C10—N3	172.9 (3)	C16—C17—C18—C19	-1.2 (5)
C8—N4—C10—N3	-0.7 (4)	C17—C18—C19—C20	0.8 (5)
C6—C1—C2—C3	-0.3 (7)	C18—C19—C20—C21	0.5 (6)
C2-C1-C6-C5	1.0 (7)	C19—C20—C21—C16	-1.2 (5)
C1—C2—C3—C4	-0.6 (6)	N1-C24-C25-N2	0.0 (4)
C2—C3—C4—C5	0.9 (5)	N2-C26-C27-C28	49.1 (5)
C2—C3—C4—C7	-178.7 (4)	N2-C26-C27-C32	-132.8 (3)
C3—C4—C5—C6	-0.2 (5)	C26—C27—C28—C29	178.0 (5)
C7—C4—C5—C6	179.3 (4)	C32—C27—C28—C29	-0.2 (7)
C3—C4—C7—N4	63.1 (4)	C26—C27—C32—C31	-177.6 (4)
C5—C4—C7—N4	-116.5 (4)	C28—C27—C32—C31	0.7 (6)
C4—C5—C6—C1	-0.7 (6)	C27—C28—C29—C30	-0.4 (9)
N4—C8—C9—N3	0.2 (4)	C28—C29—C30—C31	0.5 (9)
N3-C11-C12-C13	117.3 (3)	C29—C30—C31—C32	-0.1 (8)
N3-C11-C12-C17	-61.7 (4)	C30—C31—C32—C27	-0.6 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C1—H1…F3 ⁱ	0.93	2.41	3.229 (6)	147
C7—H7A…F1 ⁱⁱ	0.97	2.54	3.375 (5)	144
C7—H7B…F2 ⁱⁱⁱ	0.97	2.47	3.184 (5)	130
C9—H9…F4	0.93	2.45	3.358 (6)	164
C10—H10…F7	0.93	2.47	3.384 (10)	166
C14—H14…F10 ^{iv}	0.93	2.55	3.453 (11)	165
C18—H18…F11	0.93	2.46	3.252 (12)	143
C18—H18…N3	0.93	2.62	3.102 (4)	113
C23—H23…F4	0.93	2.37	3.241 (6)	156
C24—H24…F9 ⁱ	0.93	2.53	3.258 (15)	136
C25—H25…F2 ^v	0.93	2.49	3.374 (6)	158

Symmetry codes: (i) *x*, -*y*+1, *z*+1/2; (ii) -*x*+1/2, *y*-1/2, -*z*+1/2; (iii) *x*, *y*-1, *z*; (iv) *x*, *y*+1, *z*; (v) *x*, -*y*+2, *z*+1/2.

Fig. 1

Fig. 2